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Multiple Phase Transitions in the 
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The generalized Curie-Weiss model is an extension of the classical Curie-Weiss 
model in which the quadratic interaction function of the mean spin value is 
replaced by a more general interaction function. It is shown that the generalized 
Curie-Weiss model can have a sequence of phase transitions at different critical 
temperatures. Both first-order and second-order phase transitions can occur, 
and explicit criteria for the two types are given. Three examples of generalized 
Curie-Weiss models are worked out in detail, including one example with 
infinitely many phase transitions. A number of results are derived using large- 
deviation techniques. 
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1. I N T R O D U C T I O N  

The classical Curie Weiss model is an exactly soluble model of ferro- 
magnetism that allows one to study in detail the behavior of thermo- 
dynamic quantities in the neighborhood of the critical point. Unfor- 
tunately, the predictions of the model do not completely agree with 
experiment, and so other models, such as nearest neighbor Ising models, 
must be considered. However, because of its simplicity and because of the 
correctness of at least some of its predictions, the classical Curie-Weiss 
model occupies a central place in the statistical mechanics literature. 

The classical Curie-Weiss model is a spin-l/2 model whose 
Hamiltonian is a quadratic function of the mean spin value in the system. 
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A natural extension of the model is to replace both the quadratic interac- 
tion function by a more general interaction function and the spin-l/2 
single-site distribution by a more general distribution. The purpose of this 
paper is to study phase transitions in the resulting models, which are called 
generalized Curie-Weiss models and are defined below. We will see that the 
generalized Curie-Weiss model exhibits a number of phenomena that are 
absent in the classical case. 

The generalized Curie-Weiss model is defined in terms of a function g 
and a probability measure p satisfying the following hypotheses. 

Hypotheses 1.1. (a) g is an even, real analytic function on [R 
and is strictly increasing on [0, oe); g (0 )=  0. 

(b) p is a symmetric Borel probability measure on N that is non- 
degenerate (i.e., p :/= 6o). 

(c) Define L = s u p { x :  x is in the support of p}. We assume that 
there exists a symmetric, nonconstant, convex function h on I - L ,  L]  such 
that 

g(x)<~h(x) for x e [ - L , L ]  (1.1) 

f exp[~h(x)]p(dx)<oe (1.2) for all ~ > 0  
{ - L , L ]  

The hypotheses are satisfied if, for example, g is an even polynomial 
with positive coefficients and p has bounded support. This choice of g 
corresponds to k-body interactions, k e {2, 4 ..... 2d}, where 2d is the degree 
of g. The hypotheses are also satisfied if, for example, g satisfies (a) and p 
has bounded support. 

We note that with the definition of L in Hypothesis 1.1(c) the interval 
I - - L ,  L]  is the smallest closed interval containing the support of p. 

All of the results in this paper can be generalized to the case where g is 
C 2 and satisfies a certain two-sided real analyticity condition. For  such a g, 
we have an example of a generalized Curie-Weiss model with infinitely 
many phase transitions. See Example 5.3 for details. 

The generalized Curie-Weiss model is defined by the sequence of 
probability measures on Nn, n e { 1, 2,.. }, given by 

Pn,~{dXl ..... dxn} = exp nflg p(dxi)z~(fi ) (1.3) 
i 1 i = l  

In this formula, n is a positive integer, fl is a positive real number 
representing the inverse absolute temperature, and Z,(fl) is the nor- 
malization 

Z,(fl) = [~_~ exp nflg p(dx~) (1.4) 
i i i = 1  
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According to Hypothesis 1.1(a), g is nonnegative and thus, according to 
Hypothesis 1.1(c), h is nonnegative. Since h is convex, 

if ]n 1 <~ Z(n, fl) <~ exp[flh(x)] p(dx) < oo 
L [ L,L] 

(1.5) 

Hence Z(n, fl) is finite. 
The classical Curie-Weiss model is defined by (1.3) with g(x)= J0x2/2 

and p(dx)=l (61+f i_ l ) .  Here ~r is a positive constant representing the 
interaction strength. 

In formula (1.3), we think of p as the distribution of a single scalar 
magnetic spin in the absence of interactions and of g as the interaction 
potential of the mean spin value. Formula (1.3) gives the joint distribution 
of n interacting spins at the sites 1, 2 ..... n of Z. In the sequel, we will refer 
to g as the interaction function and to p as the single-site distribution. 

The generalized Curie-Weiss model with a quartic interaction function 
was used by Mouritsen et al. (Is) in order to study ]sing-type models with 
four-body spin interactions. Limit theorems for the generalized Curie- 
Weiss model with a special class of interaction functions have been studied 
by Jeon. (12'13) These limit theorems generalize some results of Ellis and 
Newman. (6'7) Thermodynamic quantities calculated in the classical Curie- 
Weiss model coincide with those calculated via the phenomenological 
theory of ferromagnetism called mean field theory. For an overview of 
results valid for the classical Curie-Weiss model, see Ellis (4) or 
Thompson. (23) The classical Curie-Weiss model is also known as the 
Husimi-Temperley model. (11'24) 

The key function used in analyzing the generalized Curie-Weiss model 
is the specific Gibbs free energy tp(fi), which is defined by the formula 

1 
- f l 0 ( f i ) =  lira - logZn(f l ) ,  f l > 0  (1.6) 

n ~ o o  n 

For the classical Curie Weiss model, the well-known Gaussian transform 
trick of Kac (14) yields 

-fltp(fl) = sup log cosh t -  (1.7) 
t E ~  

However, for the generalized Curie-Weiss model with a nonquadratic 
interaction function this trick is not available. Instead, we appeal to the 
theory of large deviations for the evaluation of the limit in (1.6). 
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Let Sn be the nth partial sum of i.i.d, random variables distributed by 
p. The specific Gibbs free energy O(fi) can be written in the form 

- f iO( f i )=  lim l logZ.(f i )  
n --* oo n 

1 
= limo~ log fR exp nfig p(dx~) 

/7 n i 1 i = 1  

We define the function 

c(t)=log feexp( tx )p(dx  ), t e n  (1.9) 

which is the cumulant generating function of p. The entropy function of p 
is defined to be the Legendre-Fenchel transform i(u) of c(t): 

i(u) = c*(u) = sup {tu -- c(t)} (1.10) 
t ~ N  

The function i(u) is strictly positive for all u not equal to the mean 0 of the 
symmetric probability measure p. According to the theory of large 
deviations, if A is any Borel subset of N whose closure does not contain the 
mean 0 of p, then the probability P{Sn/n e A } converges to 0 exponentially 
fast like e x p [ - n i ( A ) ] ,  where 

i (A)= inf i (u )>0  (1.11) 
U ~ A  

We summarize this fact by the heuristic formula 

P - ~ e d u  ~ e x p [ - n i ( u ) ] d u  as n ~ o o  (1.12) 

If this is inserted in (1.8), the latter suggests by Laplace's method that O(fi) 
can be determined by the variational formula 

- fiO(fi) = sup{f ig(u)-  i(u)} (1.13) 

As we discuss in Section 2, formula (1.13) is rigorously true. In the case of 
the classical Curie-Weiss model, the right-hand side of (1.13) can be 
directly shown to be equal to the right-hand side of (1.7), using properties 
of Legendre-Fenchel transforms. 
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It is well known that for the classical Curie-Weiss model the 
supremum in (1.7) is attained at a unique nonnegative point t*; equivalen- 
tly, the supremum in (1.13) is attained at a unique nonnegative point u* 
and u * =  tanh t*. This point coincides with the value of the spontaneous 
magnetization m(fi) for the model at that value of fi. For 0<fi--.< 1, 
m(fi) = 0  while for /3 > 1, m(f i )>0.  The function m(/~) is a real analytic 
function of f ie  (0, 1 ) vo (1, c~), but cannot be represented as the restriction 
of one real analytic function in any neighborhood of fi--- 1 
[ l i m ~ l  m'(f i )= oc]. The value fi = 1 is called a critical value for the model. 
The following theorem considers the analogous situation for the 
generalized Curie-Weiss model. Theorem 3.1 below provides further infor- 
mation about the spontaneous magnetization. 

T h e o r e m  1.2. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. Then there exists a non- 
empty set ~a of positive points {/~i}, called critical values, which are either 
finite in number ( 0 < f i l < . . . < f i x ,  some N e  {1, 2,...}) or countably 
infinite (0 <f i l  <fi2 < "")  and divergent to ao. This set of critical values 
has the following properties. 

(a) There exists a function 

m(fi) = (0, c ~ ) \ ~  --+ [0, L) (1.14) 

such that m(fi)=0 for 0 < fi<fi~; m(fi)> 0 and is strictly increasing for 
fie (fil, ~  ~a- The function m(fi) is real analytic on each connected sub- 
interval of the set (0, o o ) \ ~ ,  but cannot be represented as the restriction of 
one real analytic function in any neighborhood of a critical value fii, i>~ 1. 
We call m(fi) the spontaneous magnetization. 

(b) For 0 < fi < fix, the supremum in the formula 

- fit~(fi) = sup{fig(u)- i(u)} (1.!5) 
u ~ N  

is attained at the unique point u = 0. For f ie  (fil, c~)\N,  the supremum in 
(1.15) is attained at the unique points u = m(fi) and u = -m(fi). 

Part (b) of Theorem 1.2 has an interesting probabilistic application. 
For any bounded, continuous function f, consider the limit 

lim f f ( ~_ X~) P,, ~(dx,,..., dx,,) 
n ~ o o  n i _ l  ~ " 

= lim S~ f(u) exp[nfig(u)] P{S,,/n e du} 
, , ~  ~ exp[nfig(u)] P{S,,/nedu} (1.16) 
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The probability measures P.,~ define the generalized Curie-Weiss model 
and are given in (1.3); Sn is the nth partial sum of i.i.d, random variables 
distributed by p. The heuristic large-derivation formula 

P{Sn/n~du}~exp[-ni(u)]du as n ~ o o  (1.17) 

suggests that the limit in (1.16) should be determined by the points u at 
which the function /3g(u)-i(u) attains its supremum over ~. For 
/3e(0, o e ) \ ~  these points were determined in part (b) of Theorem 1.2. 
Because of symmetry, we are led to the following limit in (1.16): 

~n \ i =  1 

= ,ff(0) for /3e (0,/31) (1.18) 
[�89 for /3e(fll, o o ) \ ~  

This limit is in fact rigorously true [see Theorem 3.1(e)]. F o r / / e  (0,/31) we 
are in the region of relatively weak interactions among the spins, and 
according to (1.18), a law of large numbers for the spin per site is valid. 
For/3 e (/31, oo) we are in the region of relatively strong interactions among 
the spins, and according to (1.18), for /3e(/31, o o ) \ ~  the law of large 
numbers breaks down. Concerning the evaluation of the limit when/3 is a 
critical value, see Remarks 1 and 2 following Theorem 3.1. 

According to part (a) of Theorem 1.2, the spontaneous magnetization 
m(/3) cannot be represented as the restriction of one real analytic function 
in any neighborhood of a critical value/3i, i >/1. We make a definition in 
order to distinguish between the two possible types of nonanalytic behavior 
that m(/3) may have in the neighborhood of a critical value. The 
generalized Curie-Weiss model is said to have a first-order phase transition 
at a critical value/3i if 

m - (/3i) = lim m(fl) < m + (/3i) = lim m(/3) (1.19) 
Btpi /~ +/~i 

In this case /3~ is called a first-order critical value. The generalized Curie- 
Weiss model is said to have a second-order phase transition at a critical 
value/3i if 

m (/3i)=m+(/3i) and lim m'(/3)= oo (1.20) 

In this case/3i is called a second-order critical value. 
It is well known that the classical Curie-Weiss model has a second- 

order critical value/31 = l /J0 and that this is the only critical value for the 
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model. The generalized Curie Weiss model can be more complicated. In 
fact, it can have a sequence of critical values with both first-order and 
second-order phase transitions occurring. In Section 4 a number of criteria 
are given for the occurrence of first-order or second-order phase transitions 
at the critical values. Here is a sample of these criteria: 

(a) If/~1 < limx~0 i'(x)/g'(x), then/~1 is a first-order critical value. 

(b) If ~l=inf{i'(x)/g'(x): 0 < x < L } ,  then /~1 is a second-order 
critical value. 

(c) /~1 is a second-order critical value if and only if m +(fl~)= 0, and 
then g"(0) > 0  and/~l = 1/E~x2dp g"(0)]. 

(d) If g" (0)=  0, t hen /~  is a first-order critical value. 

(e) The generalized Curie-Weiss model does not have first-order 
phase transitions if and only if 

i"(x)/i'(x)>>,g"(x)/g'(x) for all 0 < x < L  (1.21) 

(f) The generalized Curie Weiss model has exactly one second-order 
phase transition at /31 = 1/[~ x 2 dp. g"(0)] < ~ if and only if 
there is strict inequality in (1.21) for all 0 < x < L. 

Criteria (a)-(d) are part of Theorem 4.4; criteria (e) and (f) are parts 
of Theorem 4.6 and Corollary 4.7, respectively. Criteria (a)-(f) and others 
are developed in Section 4 as consequences of a unified approach. We 
consider the results in this section to be among the main contributions of 
this paper. 

In Section 5 three examples of generalized Curie-Weiss models are 
presented. The first model exhibits a single first-order phase transition. The 
second model exhibits three phase transitions with both first-order and 
second-order phase transitions appearing. The last model shows a cascade 
of infinitely many phase transitions. These examples are analyzed 
numerically and by means of the theorems in this paper. 

In Sections 6 and 7 we prove Theorem 3.1, which states the existence 
and properties of the spontaneous magnetization in the generalized Curie- 
Weiss model. 

We end this introduction by mentioning an interesting problem related 
to these models. An important application of the classical Curie-Weiss 
model is that it provides rigorous bounds to a number of quantities of 
interest in other models of ferromagnetism. Let /~c and m(/~) denote the 
critical inverse temperature and spontaneous magnetization, respectively, 
for any ferromagnetic model on yD with two-body interactions described 
by a summable ferromagnetic interaction J. Denote by ~cw and mCW(/3) 
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the corresponding quantities for the classical Curie-Weiss model with 
interaction strength J0 = ~]k~zo J(k). We then have the result that 

/~c>~/~ c w =  1/j'o and mCW(/~)~>m(/~) forall /~>0 (1.22) 

These and related Curie-Weiss bounds have been derived in many 
papers. O'9'1~176 An interesting problem for future research is to 
investigate whether quantities in ferromagnetic models with multibody 
interactions can be rigorously bounded by corresponding quantities in 
appropriately chosen generalized Curie-Weiss models. 

2. S P E C I F I C  G I B B S  FREE E N E R G Y  

We assume that the interaction function g and the single-site dis- 
tribution p satisfy Hypotheses 1.1. Our first task is the evaluation of the 
specific Gibbs free energy for the generalized Curie-Weiss model. The 
specific Gibbs free energy is the function ~(/?) defined b the formula 

-flqJ(/~)= lim l logZ.(/~) 
n ~  n 

= lim - log exp nflg p(dxi) 
n ~ o ~ n  n i 1 i = l  

1;o {5} = lim - l o g  exp[nflg(u)] P edu (2.1) 
n ~ o o n  

where S~ is the nth partial sum of i.i.d, random variables distributed by p. 
In order to evaluate this limit, we appeal to the theory of large deviations. 

We first define the function 

ctt)=logfexpItx)p(dx)=logIc L, L e x p t t x ) p ( d x ) ,  (2.2) 

Clearly, c(t) > - ~ .  We now show that c(t) < ~ .  According to Hypotheses 
1.1(a) and (c), the function h on [ - L ,  L] is symmetric, nonconstant, 
convex, and nonnegative. Hence, there exist constants ~1 > 0, ~2 ~ 0  such 
that h(x)~ 71 I x l -  72 for all x E [ - L ,  L]. It follows from (1.2) that for any 
t ~  

f exp(tx) p(dx)<~f exp{ltl[h(x)+72]/71}p(dx) (2.3) 
[ - -L ,L  3 [ - -  L , L ]  

Thus, c(t) is finite. The function c(t) is a finite, strictly convex function on 
and is real analytic on ~. 
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We define the entropy function of the measure p as the Legendre- 
Fenchel transform of c(t): 

i(u) = c*(u) = sup{tu - c(t) }, u E R (2.4) 

The function i(u) is well-defined and is a convex function which maps 
into [0, oo]. For each positive integer n, let S, be the nth partial sum of 
i.i.d, random variables distributed by p. The following well-known proper- 
ties of i(u) will be used in the sequel. For proofs, see Sections VII.5 and 
VIII.3 of ref. 4. Properties (a) (d) state that the distributions P{S,,/ne .} 
have a large-deviation property with entropy function i(u). 

2.1. P roper t i es  o f  i(u) 

(a) i(u) is lower semicontinuous. 

(b) For each b real, the set { u e R : i ( u ) ~ b }  is compact. 

(c) For each closed set K i n  

l i m s u p l l ~  ~ < n ~  -n --,~Kinfi(u) (2.5) 

(d) For each open set G in 

l i m i n f l l ~  >~- in f  n ,~G (2.6) 

(e) Define L = sup{x: x is in the support of p}. The function i(u) is 
real analytic on ( - L ,  L) and is even. 

(f) i(u) = oo for t u] > L and i(L) = i ( - L )  is finite if and only if p has 
an atom at L (p{L} >0).  

(g) i(u) is strictly decreasing for u �9 ( - L ,  0] and is strictly increasing 
for u e [0, L); i(0) = 0. Thus, i(u) > i(0) = 0 for all u :~ 0. 

(h) l im,t  L i ' (u)= oo and l im,;  L i ' (u)= --OC. 
(i) i'(u) defines a one-to-one mapping of ( - L ,  L) onto N, and i' is 

the inverse function of c'. 

(j) i ' ( 0 ) = 0  and i"(O)=l/~x2dp.  

In the next theorem, we prove the variational formula 

- fir = sup{fig(u)-  i(u)} (2.7) 

together with related facts. 
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T h e o r e m  2.2. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. The following conclusions 
hold. 

(a) The limit defining the specific Gibbs free energy exists and is 
finite and for each fi > 0 

-flO(fi) = lira 1 log Z,(fi) = sup{fig(u) - i(u)} (2.8) 
n ~ o o  n u G ~  

(b) The function f i ~ - f i ~ ( f i )  is a continuous convex function of 
fi e [0, oo) and 

o~<-fi~(fi)~logft /~,L] 

where h is given in Hypothesis 1.1(c). 

(c) For each f i>0 ,  

(d) 

exp[fih(x)] p(dx) < oo (2.9) 

fig(u)- i(u) ~ -oo as lul ~ oo (2.10) 

For each f i>  0, there exists m e  ( - L ,  L) such that 

f ig(m)- i(m)= sup{f ig(u) -  i(u)} = -fi~b(fi) (2.11) 
u E R  

where L = sup{x: x is in the support of p }. If L < o% then the supremum in 
(2.11) is not attained at m e ( - o o , - L ] w [ L ,  oo). It follows that if the 
supremum in (2.11) is attained at m e ~ ,  then m e ( - L , L )  and 
fig'(m) =/ ' (m) .  

Proof. (a) As we noted in (2.1), 

(2.12) 

The large-deviation property of the distributions of Sn/n and 
Theorem II.7.1 in ref. 4 yield part (a), provided we show 

lim lim s u p - l o g  exp[nfig(u)] P --~edu = - o o  (2.13) 
M ~ o o  n---~oo n "~{u:flg(u)~M} 

Write S, = ZT= 1 X i ,  where XI ..... X, are i.i.d, random variables distributed 
by p. Using the bound g(u)<~ h(u) for u ~ [ - L ,  L], the convexity of h, and 
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Chebyshev's inequality, we have the following upper bound on the integral 
in (2.13): 

where 

~ < 7 = l e x p [ n ( 7 + l ) M ] P  n j  ~h(Xj)>~vM 

~< ~ e x p [ - n ( Z y -  1)M] K(fi) ~ (2.14) 

( ,  

K(fi) = | exp[3fih(u)] p(du) < oo 
, )  [ L , L ]  

by (1.2). The limit (2.13) follows. 

(b) The inequalities in (2.9) follow immediately from (1.5). The 
function fi ~ -fitp(fi) is a convex function of fi > 0 by HSlder's inequality, 
and it is therefore a continuous function of f i>0.  The continuity for 
fi ~ 0 + follows from (2.9). 

(c) We prove (2.10), first under the assumption that g is bounded at 
+_ oo. The entropy function i(u) is nonnegative, convex, and not identically 
zero. Hence i(u) ~ oo as ]ul --* oo, and fig(u) - i(u) --* -oo  as ]u[ -~ oo. We 
now assume that g is unbounded at oo and that 

lim sup[fig(u) - i(u)] ~> A (2.15) 
lul ~ 

for some real number A. It follows that 

- ( f i +  l ) ~ ( f i +  l ) = s u p { g ( u ) + f i g ( u ) - i ( u ) } = o o  (2.16) 
U ~ R  

This contradiction to part (a) of the theorem proves (2.10). 

(d) It follows from (2.11) that for each f i > 0  the upper semi- 
continuous function u ~ f ig (u) - i (u)  attains its supremum at some point 
m ~ R. For L < 0% since i (u)~  oo for lu[ > L, the supremum is not attained 
at m~ ( - o o ,  - L ) w  (L, oo). Suppose that L <  oo and 

f i g (L ) -  i (L)= sup{fig(u)-  i(u)} (2.17) 
u E ~  
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Since i (u)  is convex, i ' ( u )  ~ oo as u ~ L , and g ' ( L )  exists, we have for all 
sufficiently small e > 0 

i ( L )  - i ( L  - ~) >~ i ' ( L  - e) 
8 

and so 

g ( L  ) - g ( L  - ~) 
>f i  (2.18) 

f i g ( L  - a) -- i ( L  - e) > fig(L) -- i ( L )  (2.19) 

This contradicts (2.17). It follows that if the function u - - , f i g ( u ) - i ( u )  

attains its supremum at m e  ~, then m6 ( - L ,  L); by calculus, f ig ' (m)= 
i ' ( m ) .  This completes the proof of the theorem. II 

In the next section, we turn to one of the main points of this paper, 
which is the structure of the set of points m at which the supremum in 
(2.11) is attained. 

3. EXISTENCE OF CRIT ICAL V A L U E S  A N D  PROPERTIES 
OF THE S P O N T A N E O U S  M A G N E T I Z A T I O N  

The bulk of this paper is concerned with the structure of the set of 
points m satisfying 

f i g ( m )  --  i ( m )  = s u p { f i g ( u )  --  i(u)} = - - f iO( f i )  
u E ~  

(3.1) 

We introduce the set 

~ / =  {(fi, m ) e  (0, oo) x ~: f i g ( m ) -  i ( m )  = sop{f ig (u) -  i(u)} = -f i~(f i )  } 
U E R  

(3.2) 

and its cuts at fi > 0 

JC/a= {me ~: (fi, m) e ~ ' }  (3.3) 

According to part (d) of Theorem 2.2, J//~ is nonempty for each f i>0 .  
Before discussing the structure of these sets for the generalized Curie-Weiss 
model, we review the situation for the classical Curie-Weiss model. To ease 
the notation, we set Jo = 1. 

The entropy function corresponding to p =�89 + 6_1) is given by 

1 - u  l + u  ,, 
i (u)=  - - - - ~ l o g ( 1 - u ) + - - - ~ l o g t l + u )  for lul~<l (3.4) 

oe for l u l > l  
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where 0 log 0 = 0. For the classical Curie-Weiss model with Jo = 5, 

- f l r  = sup {f lu2/2 - i (u)  } (3.5) 

The supremum is attained at points m satisfying 

(tim2~2 - i (m) ) '  = 0 or t im = i ' ( m )  = tanh -" m (3.6) 

For 0</3~< 5, (3.6) has a unique solution m = 0 ,  and for /3> 1 three 
solutions m=m(/3), -m(/3), 0, where rn(/3) is positive and is strictly 
increasing to 1 as/3 ~ ~ .  For 0 </~ ~< 5, the supremum in (3.5) is attained 
at m--0.  For/3 > 1, the supremum in (3.5) is attained at m--m(/3), -m(/3), 
not at m = 0. Thus, the sets ~/~ are given by 

= ~{0} for 0<f i~< l  (3.7) 
J//~ ~{m(fi), --m(/3)} for f l>  l 

We extend the definition of m(/~) by setting m(/3) = 0 for 0 </3 <~ 5. On the 
intervals (0,/~1) and (ill, oo) the function m(/3) is real analytic. The 
function m( f l )  is continuous a t / / =  1 [lim~ ~ l m(fl) = 0], but is not differen- 
tiable at/3 = 5. In fact, 

m(/3) ~ [3(/3-  1)] ~/2 as / 3~1  + (3.8) 

The classical Curie-Weiss model with Jo = 1 is said to have a critical value 
at /3 = 1. The quantity m(/3), positive for /3 > 5, is called the spontaneous 
magnetization. 

The next theorem considers the generalized Curie-Weiss model. The 
analogue of (3.7)--i.e., the structure of the sets J//~ for/3 > 0~holds  for all 
but at most countably many values of /3 > 0. The following theorem is 
proved in Section 7. 

Theorem 3.1. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 5.1. Then there exists a non- 
empty set ~ of positive points {/3i}, called critical values, which are either 
finite in number (0</31< . . .  •/3N, some N e  {1, 2,...}) or countably 
infinite (0</31 </32< .--) and divergent to oo. This set of critical values 
has the following properties. 

(a) There exists a function 

m(/3): (0, o o ) \ ~  ~ [0, L) (3.9) 

such that m(/3)=0 for /3 e (0, /31); m(/3)>0 and is strictly increasing for 
/3e (/?l, oo)\N. The function m(/3) is real analytic on each connected sub- 
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interval of the set (0, oo) \~ ,  but cannot be represented as the restriction of 
one real analytic function in any neighborhood of a critical value fi ,  i>/1. 
We call m(f) the spontaneous magnetization. 

(b) We have 

(c) 

and 

(d) 

~'{0} for fie (0, f , )  .//d. 
- - " = ( { m ( f l ) , - m ( f l ) }  for f i e ( / ? , , o o ) \ ~  

The smallest critical value fl~ is characterized by the formulas 

fll = sup{f  > 0: J/{~ = {0} } =inf{fl > 0:0 r Jg~} (3.10) 

We have 

flg'(m(f))=i'(m(fl)) for f ie(0,  o o ) \ ~  (3.11) 

m ( f ) T L  as fl-*oo in these t  (0, o o ) \ ~  (3.12) 

(e) For any bounded continuous func t ion f  

lim fR f (  ~= xi) Pn~(dxl ..... dxn) 
n ~ o o  n i 1 ~ ' 

= ~'/(0) for fle(O, fl,) (3.13) 
(�89189 for fie(ill, oo)\~ 

(f) If L < oo and p{L} > 0, then there are only finitely many critical 
values 0 < i l l  < --- <flu, for some N e  {1, 2,...}. 

In the next section, we discuss the possible types of nonanalytic 
behavior that the spontaneous magnetization m(fl) may have in the 
neighborhood of a critical value. We now end this section with several 
remarks. 

Remarks. 1. Part (e) of Theorem 3.1 states a limit for the spin per 
site that for fie (fi,, oo)\N represents a breakdown in the law of large 
numbers. Analogous limits also hold in the case where, for fl a critical 
value, ~ consists of more than one pair of symmetric points. These limits 
can be derived by the methods of refs. 6 and 8. The methods of these 
papers can also be used to study the fluctuations of the spin per site 
(central limit theorem and related results) in the generalized Curie Weiss 
model. 

2. We recall from the Introduction the definition of a first-order 
critical value and a second-order critical value. By the methods of this 
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paper, one may show the following additional facts (proofs omitted). If fli 
is a first-order critical value, then Jr may consist of more than two points, 
but ~/~, is always a symmetric subset of 

[-m+(f i i ) ,  --m (fli)] w [m (fli),m+(fli)] (3.14) 

which contains the endpoints 

m -  (fli) = lim m(fl) < lim m(fl) = m + (fie) 
fl T fl i fl l, fl i 

If fl~ is a second-order critical value, then 

/E~,= {m+(fl,), -m+(f l i )}  (3.15) 

and for fl=fl~ the limit (3.13) holds with m(fl) replaced by m+(fli). 

3. The specific Gibbs free energy q/(fl) is real analytic on each con- 
nected subinterval of the set (0, oe) \N.  If fl~ is a first-order critical value, 
then 0(fl) is continuous, but not c~1 in a neighborhood of fl~ [0 '(f l)  has a 
jump discontinuity at fl,.]. If fli is a second-order critical value, then O(fl) is 
cg=, but not cg2 in a neighborhood of fi~. For  any fl > 0 that is not a first- 
order critical value, the derivative [ - f l O ( f l ) ] '  equals the specific energy: 

[--flO(fl)] '= g(m(fl))= lira 1 log pn.~(dXl,..., dx,,) (3.16) 
. . . .  n , g  n i 1 

4. The generalized Curie-Weiss does not exhibit a kth-order phase 
transition for k/> 3, where the specific Gibbs free energy is C ~-1, but not 
C k in a neighborhood of a critical value. 

In the next section, we look more closely at the classification of critical 
values according to first or second order. 

4. CRITERIA FOR F IRST-ORDER A N D  
S E C O N D - O R D E R  PHASE T R A N S I T I O N S  

According to part (a) of Theorem 3.1, the spontaneous magnetization 
m(fl) cannot be represented as the restriction of one real analytic function 
in any neighborhood of a critical value fli, i>~ 1. In fact, m(fl) may have 
one of two possible types of nonanalytic behavior at a critical value. In 
order to distinguish the two cases, we have the following definition. 

D e f i n i t i o n  4.1. The generalized Curie-Weiss model has a first- 
order phase transition at a criticM value fli if 

m - (fli) = lim m(fi,) < m + (fl;) = lim m(fl~) (4.1) 
fl T fli fl ~ fli 

822/52/1-2-12 
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In this case fli is called a first-order critical value. The generalized Curie-  
Weiss model has a second-order phase transition at a critical value fli if 

m-(f l i )  = m+(fii) and lim m'(fl) = oo (4.2) 

In this case fli is called a second-order critical value. 

Remarks. 1. In Definition4.1, since m( f i )=0  for f le(0 ,  fll), we set 
m - ( f l , ) = 0 .  

2. According to our discussion in Section 3, the classical Curie-Weiss 
model has a single critical value at fll = 1 and this critical value is of second 
order. 

3. The definitions of first-order and second-order phase transitions 
given in Definition 4.1 are standard. See, for example, ref. 2, where the 
definitions are formulated in terms of the specific energy. 

According to part (d) of Theorem 3.1, the specific magnetization m(fl) 
on the set (ill, oo ) \N  is locally the inverse function of the real analytic 
function 

b ( x ) -  i'(x) g'(x)' x e ( - L , O ) w ( O , L )  (4.3) 

By Hypothesis 1.1(a), g ' (x )#0  for x r  In this section we relate the kind 
of phase transition that occurs at a critical value--i.e., first or second 
order - - to  properties of b(x). Since b(x) is smooth and symmetric, it follows 
that no other kinds of nonanalytic behavior besides (4.1) and (4.2) can 
O c c u r .  

Since both g and i are even functions, b is also an even function. Since 
by Hypothesis 1.1(a) g'(x) > 0 =g'(O) for x > O, we see that g"(O)/> O. The 
function b can be extended to a real analytic function on ( - L ,  L) if and 
only if g ' (O)>  O. Otherwise, b has a pole at O. Defining ~2 = ~ x2 dp, we can 
thus set 

fi'(O)/g"(O) = 1 / [g ' (0 )  P2] if g"(0) > 0 
b(0) (4.4) 

( + o o  if g"(0) = 0 

For  future reference, we note that if g " (0 )>  0, then 

b'(0) = 0  (4.5) 

i(iv)(0) g " ( 0 ) -  i"(0) g(i~)(O) 
b"(0) = 3[g,,(0)] z 

where #4 = S x4 dp. 

1 [ 3 , 2  , 
- 3#I  g"(O) L "= g T05 J 

(4.6) 
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Before proceeding, let us first see how b(x) is naturally related to the 
occurrence of phase transitions. A critical value fii is distinguished by the 
fact that in a neighborhood of fii the spontaneous magnetization m(/~) 
has nonanalytic behavior. According to Theorem 3.1(c)"and Remark2 
following Theorem 3.1, for fi >f i l  not a first-order critical value, m(fi) is 
the unique positive point at which the function u-4 f i g (u ) -  i(u) attains its 
supremum. In fact, for such fi 

fig(m(fi)) - i ( m ( f i ) )  = s u p { f i g ( u )  - i ( u ) }  = - f i O ( f i )  ( 4 . 7 )  
uE~: 

We now express the function fig(u) - i(u), u >~ O, in terms of b(x) by writing 

f ig (u) - - i (u)= [fi-- b(x)] v(dx) (4.8) 

where v(dx)= g'(x) dx is a nonnegative measure on [0, oe). 
If b has a pole at 0, then the integral is defined as 

lim [" [-fi- b(x)] v(dx) 
s ~ O Q  

(4.9) 

which is well-defined since b(x) v(dx) = i '(x) dx for x > 0. It follows that for 
fixed fi > 0 the function fig(u) - i(u), u >>, O, attains its supremum at u = u* if 
and only if 

~* [ f i - b ( x ) ]  v(dx)>~ [ f i - b ( x ) ]  v(dx) forall u>~0 (4.10) 

Since in particular (4.10) applies to fi >/31 not a first-order critical value 
and u* =m(fi), we obtain a geometric criterion for m(fi). Stating the 
criterion for rn(fi) somewhat loosely, we can say that for fi > fil not a first- 
order critical value, the "area" under the curve fi - b(x) for 0 4 x ~< u, u t> 0, 
attains its supremum at the unique point u = m(fi), where "area" is taken 
with respect to the measure v(x) = g'(x) dx. A number of results that follow 
will be much more transparent if this criterion is kept in mind. We shall 
refer to it as the "area criterion for m(fi)." 

In Fig. 1, rn(fi) equals ml if ~m2[fi-b(x)] v (dx)<0  and equals m2 if 
the integral is positive. If the integral equals zero, then fi is a first-order 
critical value and m ( f i )=ml  and m+(f i )=m2.  

The first theorem in this section, Theorem 4.4, gives some conditions 
for a first-order or a second-order phase transition at the smallest critical 
value fil- Theorem 4.5 describes models without first-order phase trans- 
itions. We start with two lemmas. 
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Fig. 1. Area criterion for m(/~). 

Lemma 4.2. We assume that  the interact ion function g and the 
single-site dis t r ibut ion p satisfy Hypotheses  1.1. Then  lira supxTL b ( x ) =  oo; 
in part icular ,  b (x )  is noncons tan t  on the interval 0 < x < L. 

Proof .  If  L is finite, then i ' ( x )  ~ ov as x T L; since g' is bounded  on 
I - L ,  L ] ,  it follows that  b ( x ) ~  oo as x T L .  On the other  hand,  if L =  oo, 
then by T h e o r e m  2.2(c) for any fi > 0 and all sufficiently large x 

oo > i ( x ) / g ( x )  >~ fi (4.11 ) 

N o w  suppose  that  lim supx~o  o b ( x ) <  c~. Then  there exists a positive 
n u m b e r  A such that  

b (x )  = i ' ( x ) / g ' ( x )  <~ A for all x >~ 1 (4.12) 

It  follows f rom (4.11) and (4.12) that  for any f i > 0  and all sufficiently 
large x 

f ig(x)  - i( 1 ) <~ i (x)  - i( 1 ) <~ A [ g ( x )  -- g( 1 ) ] 

This is impossible,  since limx_~ oo g ( x ) > 0 ,  and so lim supx_  ~ b ( x ) =  oo. 

I 
L e m m a  4 .3 .  We assume that  the interact ion function g and the 

single-site distr ibution p satisfy Hypotheses  1.1. Define the quant i ty  

= inf{b(x): 0 < x < L} (4.13) 
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Then we have the inequalities 

0 ~.< fl-~< fi 1 ~ b ( 0 )  and 0 < f i l  (4.14) 

Proof .  The quantity _fl is nonnegative, since b(x )  is a positive 
function. 

We next prove that _fl ~< fi~. According to part (d) of Theorem 2.2, the 
set .~gr is nonempty for each fi >0 ,  and if m~ J C/p, then f i g ' ( m ) =  i ' (m) .  
Hence, if ~'~ contains a nonzero m, then b ( m ) =  fi and so fi ~> fl; i.e., if 
fi<_fi, then ~ =  {0}. Since fil = s u p { f i > 0 :  Jg~= {0}} [Theorem 3.1(c)], 
we conclude that _fi ~< fi~. 

To show fil ~< b(0), we may assume by (4.4) that g" (0 )>  0. For any 
fi > b(0) = l i m ~  G i ' ( x ) / g ' ( x ) ,  there exists e > 0 such that 

f i g ' ( x ) - i ' ( x ) > O  for all 0 < t x [  <~e (4.15) 

Since g(0) = i(0) = 0, it follows that 

sup{ f ig (u )  - i(u)} ~> fig(e) - i(e) > 0 = fig(O) - i(O ) 
u r  

Hence 0 r JC{~. Since /71 = inf{fi > 0 r ~'p} [Theorem 3.1(c)], we conclude 
that fil ~< b(0). 

We now prove that fil > 0. Let us assume that fi~ = 0  and obtain a 
contradiction. Since fll = inf{fi > 0 : 0  r ~ }  and ~'~ is nonempty for each 
f i > 0  [Theorem2.2(d)] ,  there exist sequences l~>y~J. 0 and m , E ( O , L )  
such that 

g ( m , )  - i ( m , )  >~ 7, g(m,,)  - i (m , )  

= sup{y, g(u)  - i(u)} ~> 0 (4.16) 
u E ~  

But b ( m , ) =  7, ~ 0 and info.<x~ g b ( x ) >  0 for any M e  (0, L). It follows that 
m,~'L. If L =  0% then part (c) of Theorem 2.2 implies that 
g ( m , ) - i ( m , ) ~ - o o .  This contradiction to (4.16) shows that f i l>0 .  
Assume now that L < oo. As m, T L, the quantities { g'(m,)} stay bounded, 
but i ' ( m , )  ~ oo. Hence 

7n g ' (mn)  - i ' (m,,)  --* - c o  

But this contradicts the fact that 7n g ' ( m n ) -  i ' ( m , ) =  0. Again we conclude 
that fil > 0. The proof of Lemma 4.3 is complete. | 

According to parts (a) and (b) of the next theorem, whether the 
smallest critical value fil is a first-order critical value or a second-order 
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critical value may be characterized by whether we have strict inequalities in 
(4.14) or not. 

T h e o r e m  4.4. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. Define ]22=Sx2dp and 
]24 = f x4 dp. 

If /31 <b(0), then _fl </31 < b(0) and /31 is a first-order critical (a) 
value. 

(b) 
value. 

(c) 
then 

If _fl=/31, then f f=/31=b(0)  and /31 is a second-order critical 

/31 is a second-order critical value if and only if m+(/31)= 0, and 

1 
/31 = b ( 0 )  = - -  < (30 (4.17) ]22g"(0) 

(d) In particular, assume either that g"(0) = 0 or that g"(0) > 0 and 

312~ < ]24 -~- ]23 g(iV)(O)/g,,(O ) (4.18) 

[i.e., b"(0)< 0; see (4.6)]. Then/31 <b(0). Hence, by part (a), /31 is a first- 
order critical value. 

Remarks. 1. According to part (d) of the theorem, if g is an even 
polynomial with no quadratic term, then /31 is a first-order critical value. 
The c a s e  g ( x ) = x  4 was considered by Mouritsen eta/. (15) 

2. Only in the case where fl < / 3 1  = b(0) can we not a priori say what 
kind of phase transition occurs at/31. Typically in this case a second-order 
phase transition at /31 is "closely" followed by a first-order phase transition. 
If both happen to fall together, then the second-order phase transition is 
suppressed by the first-order phase transition. These remarks as well as 
parts (a) and (b) of Theorem 4.4 may be clarified by referring to the "area 
criterion for m(/3)" presented earlier in this section. 

Proof  of  Theorem 4.4. (a) We asume that/31 <b(0). According to 
Theorem 3.1, the spontaneous magnetization re(x) is positive for 
x e  (/31,/32) and for x e  (/31,/32) satisfies b ( m ( x ) ) = x .  Taking x~/31, we see 
that the quantity m+(/31)=limx+alm(x)  satisfies b(rn+(/31))=/31. In 
general, m § (/3x) ~> 0. If m § (/31) = 0, then 

/31 = b(rn + (/31) ) = b(0) (4.19) 

But this contradicts the hypothesis that /31<b(0). It follows that 
m § (/31) > 0. Since m (/31) = 0, /31 m u s t  be a first-order critical value. 
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We now prove that ~</ /1 .  According to Theorem3.1(b), for 
//l < / / < / / 2  the set JCz'~ equals {m(//), -m(/ / )} ,  and so 

sup {//g(u) - i(u)} =//g(m(//)) - i(m(//)) > 0 =//g(0) - i(0) (4.20) 
u E N  

Taking//$/ /1,  we see that//1 g(m+(/ / l ) )  - i(m +(//1)) ~> 0 or 

0 m + ( f l l )  [- / /1 gt(x)  -- i t (x)  ~ dX ~ 0 (4.21) 

Since//1 < b(0), for a suitable choice of e>0 ,  //1 <b(x)  for all - e < x < e .  
This implies that 

/ / l g ' ( x ) - i ' ( x ) < O  for 0~<x<e  (4.22) 

Hence by (4.21) there exists XoE(a,m+(//l)) such that / / l g ' ( X o ) -  
i '(xo) > 0. We conclude that 

_//<. b(xo) <//1. (4.23) 

This completes the proof of part (a). 

(b) We assume that _~ =//1- Then //1 ~< b(x) for all 0 < x  <L .  Since 
b(x) is a real analytic function on the interval 0 < x < L and is nonconstant 
on that interval, equality in the equation b(x)=//1 holds at most at 
countably many points on the interval 0 < x < L. Hence 

�9 t . ~  //1 g'(x)  - l (x)  .~ 0 for all 0 < x < L (4.24) 

with equality at most at countably many points. Thus, for all 0 < u < L 

fo' E//1 g ' ( x ) - i ' ( x ) ]  d x < O  (4.25) 

In the proof of part (a), we showed that 

fo ~'~1) [//1 - i ' (x)]  dx >~ 0 (4.26) g'(x)  

The proof of this inequality did not use the hypothesis in part (a) that 
//l < b(0). Comparing the last two displays, we see that m+(//1) must equal 
zero. Hence/ / i  must be a second-order critical value. 

We now prove that//1 = b(0). By Lemma 4.3, //1 ~< b(0). By part (a) of 
the present theorem, if //1 <b(0),  then //l is a first-order critical value. 
However, we have just proved that //1 is a second-order critical value. It 
follows tha t / / l  = b(0). This completes the proof of part (b). 
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(c) If fl  is a second-order critical value, then m+(f l l )=m-( f l l ) .  
Since in general m (tim)= 0, it follows that m +(tim)= 0. Now suppose that 
r n + ( f l l ) = l i m ~ m ( f i ) = O .  We prove that fll is a second-order critical 
value. Since m(fl) > 0 for fl e (ill, f12) and 

b(m(fl) ) = i'(m(fl) )/g'(m(fl) ) = fl 

(Theorem 3.1 ), it follows that 

(4.27) 

lim b(m(fl)) = lim b(x) exists and equals fll (4.28) 
~ f l l  x ~ 0  

However, 

lim b(x)= lim i '(x)/x (4.29) 
x~o x - o g ' ( x ) / x  

and l imx~o i ' ( x ) / x=i" (O)=l /p  2 If g" (0)=0 ,  then the limit in (4.29) 
would be oo. This contradicts (4.28), proving that g"(0)> 0. In this case, b 
can be extended to a real analytic function on ( - L ,  L), and we have 

1 
b(0) = - -  < oo and 

~2 g"(0) 
b'(m+(fll))=b'(O)=O (4.30) 

Since for f ie (ill, J~2), m(fl) is differentiable, (4.27) implies that 

1 
m'(fl) - IttP)b"m'~ and lim m'(fl) = ~ (4.31) 

It follows that//1 is a second-order critical value. We have already shown 
in this proof under the hypothesis m + (fl~)= 0 that g" (0)>  0 and b can be 
extended to a real analytic function on (--L, L). In this case, the limit in 
(4.29) equals 

1 
lim b(x)= b ( 0 ) - - -  < oo (4.32) 
x + o #2 g"(0) 

Combining this with (4.28) completes the proof of part (c). 

(d) If g" (0)=0 ,  then b(0)= oo and fll <b(0)  holds trivially. Assume 
g"(O) > 0. According to (4.6), 

1 [3#~ 3 g (iv)(O)] 
b"(O)= 3#4g,,(0--- ~ - ~ 4 - # 2  ~ J (4.33) 

Hence the inequality in (4.18) is equivalent to b"(0)<0.  Since b ' (0)= 0, it 
follows that for a suitable e > 0, b(x) < b(0) for all x satisfying 0 < Ix[ ~ e. 
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Since b(x)=i'(x)/g'(x) and g ( 0 ) = 0 = i ( 0 ) ,  we find by integrating that 
b(0) g(~) - i(e) > 0. By continuity, ~g(~) - i(e) > 0 for any ~ <  b(0), which is 
sufficiently close to b(0). Thus, 

sup{~g(u)-i(u)} >~g(~)-i(e)>O=~g(O)-i(O) (4.34) 
u E ~  

and so 0qIJg~. Since f l l= in f{ f l>0 :0q~J /~ ) ,  we conclude that fll~<]~< 
b(0). This completes the proof of Theorem 4.4. II 

Next, we characterize generalized Curie-Weiss models without first- 
order phase transitions. For  this purpose, we need a definition. 

Definition 4.5. An inverse absolute temperature/3 is simple if there 
exists at most one x ~ (0, L) such that b(x) =/3. 

Theorem 4.6. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. Then the following 
statements are equivalent. 

(a) The generalized Curie-Weiss model does not have first-order 
phase transitions. 

(b) The function b(x)= i'(x)/g'(x) is strictly increasing on the inter- 
val 0 < x < L; since b(x) is real analytic, this is equivalent to b'(x)>1 0 or 

i"(x)/i'(x) >~ g"(x)/g'(x) for all 0 < x < L (4.35) 

(c) All/3 > 0 are simple. 

Proof. ( a ) ~ ( b ) .  We assume that the generalized Curie-Weiss 
model does not have first-order phase transitions. According to 
Theorem3.1, m(/3) is a continuous, strictly increasing function of 
/3~(/31, ~ ) \~ ,  m ( f l ) = 0  for 0</3</31 ,  b(m(/3))=/3 for /3~(/31, ~ ) \~ ,  
and m(fl)T L as /3 ~ m in the set (0, ~ ) \ ~ .  Since there are no first-order 
critical values, we may extend the definition of m(/3) to /3 s {ill,/32,/33 .... } 
by continuity: 

m(/3i) = lira m(/3)= lira m(/3) (4.36) 
#t#i #~#i 

It follows that m maps the interval (/31, oo) onto the interval (0, L), is 
strictly increasing, and equals the inverse of b restricted to (0, L). Hence 
b(x) is strictly increasing on the interval 0 < x < L. 

(b) ~ (c). If some/3 > 0 is not simple, then there exist values xl < x2 
in (0, L) such that b(xl)=b(x2)=/3. It follows that b(x) is not strictly 
increasing on the interval 0 < x < L. 
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(c) ~ (a). We show that if a first-order phase transition occurs at a 
critical value fi~, then fii is not simple. First, suppose that i/> 2, so that 
0 < m  (fii)<m+(fi~). For fi>fii and sufficiently close to fi~, the set Jg~ 
equals {m(f i ) , -m(f i )}  [Theorem3.1(b)] ;  i.e., for all such fl and all 
x ~ ( - L , L ) ,  

flg(m(fi) ) - i(m(fl) ) >~ fg(x) - i(x) (4.37) 

Taking fi,~fl~, we see that the function x-~f i~g(x)- i (x)  attains its 
supremum on ( - L ,  L) at the interior point m + (fi~). Thus 

fiig'(m+(fii))-i'(m+(fi~))=O or b(m+(fiz))=fii (4.38) 

By a similar proof, b(m (fii)) = fii. It follows that fii is not simple. 
We now show that if a first-order phase transition occurs at the critical 

value fi~, then fi~ is not simple. We have 0 = m  (fi~)<m+(fi~), and by the 
same proof used in the case i~> 2, one proves b(m+(fil))= fii. According to 
Lemma 4.3 and Theorem 4.4, 

0 ~ fl < fll ~ b(O) (4.39) 

If fi~ <b(O), then the inequality _/3< fil and the fact that 
lira supxTL b ( x ) =  oo (Lemma 4.2) imply that there exists a positive point 
xor such that b(xo)=fil. Since also b(rn+(fil))=fil, it follows 
that if [31 < b(O), then fil is not simple. We now prove by contradiction that 
if fi~ =b(O), then fi~ is not simple. Suppose that m=m+(fi~) is the unique 
positive point satisfying b(m)= fi~. We have 

b ( x ) < f i  1 for all xe(O,m+(fil)) (4.40) 

and so 

~ m+(fll) 
f i lg(m+(fil))-i(m+(fil))= [ f i l -b(x)]  g'(x)dx>O (4.41) 

~0 

By continuity fig(m + (fi~))-i(m + ( f  l 1))> 0 for all fi < fil that are sufficiently 
close to fi~. It follows that 

sup{flg(u)-i(u)} >jfig(m+(fii))-i(m+(fi~))>O=flg(O)-i(O) (4.42) 
uE~ 

and thus that 0r This contradicts the fact that f i l = s u p { f i > 0 :  
Jr {0}} [Theorem3.1(c)] .  We conclude that m=m+(f l l ) i s  not the 
unique positive point satisfying b(m)=fil; i.e., fi~ is not simple. This 
completes the proof of Theorem 4.6. ] 
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The next corollary characterizes generalized Curie-Weiss models that 
have exactly one second-order phase transition at /31 = b(0) and no other 
phase transitions. 

Corollary 4.7. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. Then the following 
statements are equivalent. 

(a) The generalized Curie Weiss model has exactly one second-order 
phase transition at/31 = b(0) and no other phase transitions. 

(b) The derivative of the function b(x) = i'(x)/g'(x) is positive on the 
interval 0 < x < L; i.e., b'(x) > 0 or 

i"(x) / i ' (x)>g"(x) /g ' (x)  for all O < x < L  (4.43) 

ProoL (a) ~ (b). If (a) holds, then, as in the proof of (a) ~ (b) in 
the previous theorem, we see that m maps the interval (/3~, m) onto (0, L). 
Since by assumption there are no second-order phase transitions for/3 >/31, 
we have 0 < m'(/3) < oo for /3 >/31. Since b(m(/3)) =/3 for all /3 >/~1, it 
follows that 

! 
b'(m(fl)) - m'(/3) > 0 for all fl >/31 

This gives (b). 

(b) ~ (a). If (b) holds, then by the previous theorem there are no 
first-order phase transitions. Assume that a second-order phase transition 
occurs at critical values {/32, /33,--.}. As in the proof of the previous 
theorem, we may extend the definition of m(/?) to fie {//2,/?3 .... } by con- 
tinuity; for all/3 >/31 we have b(m(/3)) =/3. Since b'(x) > 0 for all 0 < x < L, 
the inverse function theorem guarantees that m is of class (gl on some 
neighborhood of each /3i, iE {2, 3,...}. This implies that a second-order 
phase transition cannot occur at/3i. Part (a) follows. II 

There is an important class of models for which the strict inequality 
(4.44) in part (b) of Corollary 4.7 can be verified to hold. Let us assume 
that the interaction function g is quadratic [-g(x) = cx 2 with c > 0] and the 
single-site distribution p satisfies Hypotheses 1.1 together with the single- 
site GHS inequality: 

c"(t) <~ 0 for t ~> 0 (4.44) 

where c(t) = log ~ exp(tx) p(dx). A large class of measures p is known for 
which (4.44) is valid; this class includes p=�89 1). (s'7) Inequality 
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(4.44) states that c'(t) is concave on the interval 0 ~< t < oo. It is not hard to 
show that since p satisfies Hypotheses 1.1, c'(t) is in fact strictly concave on 
the interval 0 ~< t < oo (see ref. 3, p. 309). It follows that the inverse function 
i'(x) is strictly convex for 0 ~< x < L or that 

i ' ( x ) < i " ( x ) . x  for all 0 < x < L  (4.45) 

This is equivalent to the inequality 

1/x = g"(x)/g'(x) < i"(x)/i '(x) for all 0 < x < L (4.46) 

which is (4.43). This gives the next corollary. 

Corollary 4.8. We assume that the interaction function g is 
quadratic [g(x)  = cx 2 with c > 0] and the single-site distribution p satisfies 
Hypotheses 1.1 together with the single-site GHS inequality (4.44). Then 
there exists exactly one second-order phase transition at fl, = b (0 )=  1/(r 
and no other phase transitions. 

In the next section, we study the phase transitions in three examples of 
generalized Curie-Weiss models. 

5. THREE E X A M P L E S  

In this section, we give three examples of generalized Curie-Weiss 
models. The first example presents a generalized Curie-Weiss model with a 
four-body interaction which exhibits a single first-order phase transition. A 
model with a higher order interaction is treated in the second example. 
This model exhibits three phase transitions with both first-order and 
second-order phase transitions appearing. A model with infinitely many 
phase transitions is considered in the third example. For  each model the 
smallest critical value fll may be determined by the formula in 
Theorem 3.1(c): fll = sup{fi > 0: d//~ = {0} }. 

E x a m p l e  5.1. We consider the generalized Curie-Weiss model with 
interaction function 

g(x)=o~lx4/4!+~2x2/2!, ~1, 0{2>0 (5.1) 

and single-site distribution p = �89 + 6 ~). Then (3.6), (4.4), and (4.6) give 

b(x) = tanh -1 x/(~lx3/3! + ~zX) (5.2) 

b(0) = l /g2,  b"(0)  = (2~ 2 - ~ 1 ) / ~  2 (5,3) 
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Par t  (d) of Theorem 4.4 tells us that  if c~ 1 > 2c%, then fil < b(0) and that fit 
is a first-order phase transition. Numerica l  calculations for 0~ 1 = 6  and 
c% = 2 show that  

fil ~0.491 and m+( f i~ )=  lim m(fi) ~ 0.63 (5.4) 

Let us recall the definitions 

~dd = {(,8, m)6  (0, oo) x ~: fig(m)- i(m)= s u p { f i g ( u ) -  i(u)} = -fi~'(fi)  } 
u f f R  

JC/p={m~R:(f i ,  m)e~'//} for f i > 0  

and define the set 

.~+ = ~ ' n  ((o, oo)x (0, ~))  

(5.5) 
(5.6) 

(5.7) 

According to Theorem 2.2(d), if m e dr for some fi > 0 and if also m > 0, 
then b(m)=fi ,  and so (fi, m ) = ( b ( m ) , m ) e J / g  + (see Lemma6 .1  below). 
The port ions of the curve in Fig. 2 marked with a solid line depict the 
set ~ ' + u { ( f i ,  0): 0<fi---<fil} in Example5.1.  Each point  in ~ +  
corresponding to some f i >  fil has the form (fi, m(fi)), where m(fi) is the 
spontaneous  magnetization.  The por t ion of  the curve in Fig. 2 marked  with 
a d o t - d a s h  line represents all points of the form (b(m), m), m E (0, L), that  
are not  in J/{ +. 

1.0 

m 

~ ( ? , )  

0.5  
/31 ~ 0.491 

rn+(~l ) ~ 0 . 6 5  
_ !i 

\: 

: \  
: \  

i 

~l 0.5 

Fig. 2. This refers to Example 5.1. The portions of the curve marked with a solid line depict 
the set d l + u  {(fl, 0): 0<fl~<fll}. Each point in Jr corresponding to some fl>fll has the 
form (fl, m(fl)), where m(fl) is the spontaneous magnetization. The line m = 1 is an asymptote 
for m(fl) as fl--, ~. The portion of the curve marked with a dot-dash line represents all points 
of the form (b(m), m), me (0, 1), which are not in ~ + .  
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Example 5.2. We consider the generalized Curie-Weiss model with 
interaction function 

g(x) = 0 . 1 5 x  6~ -I- x 6 + 4 x  2 (5 .8 )  

and single-site distribution p = l ( 6 1 + 6  1). Numerical calculations show 
that this model has three phase transitions at 

/~l = b(0) = 0.125, /~2 ~ 0.1313, and 133 ~ 0.1445. (5.9) 

The phase transition at/~1 is second order [-see Theorem 4.4(c)], while the 
phase transitions at f12 and/~3 are first order. Decreasing carefully the coef- 
ficient 0.15 in the first term in (5.8), we find a number cq ~ (0, 0.15) such 
that for the interaction function e lX6~ x6+ 4x 2 the third phase transition 
becomes one of second order at a slightly changed critical value /33. The 
portions of the curve in Fig. 3 marked with a solid line depict the 
set Jg+w{( f l ,  0): 0<f l -~ f l l  } in Example5.2. Each point in J//+ 
corresponding to some /~ >/31, /? r f12,/~3, has the form (fl, m(fl)), where 
m(fi) is the spontaneous magnetization. The portion of the curve in Fig. 3 
marked with a dot dash line represents all points of the form (b(m), m), 
m e (0, L), which are not in Jr' + 

E xa mpl e  5.3. In this example, the interaction function g is not real 
analytic as required by Hypothesis 1.1(a). Instead g satisfies the following 
hypothesis. 

1.0 

m 

(~ 
\: 

f : _ /  0.1:513 ~s ~ O. 1445 

0 ' ~ 1~ 

;3, F2 / 

Fig. 3. This refers to Example 5.2. The portions of the curve marked with a solid line depict 
the set J /g+w{(/~,0) :  0 < / ~ f l l } .  Each point in J / +  corresponding to some r 
/~r f13, has the form (/~, m(/~)), where m(/?) is the spontaneous  magnetization. The line 
m = 1 is an asymptote  for m(/~) as fl - ,  oo. The portions of the curve marked with a do t~ tash  
line represent all points of the form (b(m), m), m e  (0, 1), which are not in J [ + .  
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Hypothesis 1.1 (a ) ' .  The function g is an even, twice continuously 
differentiable function on N, is strictly increasing on [0, ~ )  with g (0)=0 ,  
and is two-sided, real analytic in the sense that for each x ~ N there exists 
6 > 0 and two real analytic functions gl and g2 o n  ( x  - -  6, X + c~) such that 

g=gl  on ( x - f , x ]  and g=g2 on Ex, x+6) (5.10) 

All the results in this paper can be generalized if the interaction 
function g and the single-site distribution p satisfy Hypotheses 1.l(a)', (b), 
and (c). 

We now turn to our example of a generalized Curie Weiss model with 
infinitely many phase transitions. We define 

where 

g(x)= g'(u)du (5.11) 

~'(4/~)x for Ix] ~< 1/2 

g'(x)=~[rcx+sin(2~zx)]-I for Ix[ > 1/2 
(5.12) 

and let p be the standard Gaussian distribution 

p(dx) = (2~) -1/2 e x p ( -  x2/2) dx (5.13) 

Clearly g and p satisfy Hypotheses 1.1(a)', (b), and (c) Ewith h(x)= ~ ]xl, 
some ~ > 0]. Since i(x)= x2/2, we find 

b(x) -  i'(x) ~ / 4  for Ix[ ~< 1/2 
g'(x~- ~ x  2 + x sin 27rx for ]xt > 1/2 (5.14) 

For any positive integer n, 

b'(n+ 1/2)=0 and b"(n+ 1/2)= - 2 ~ < 0  (5.15) 
while 

b(n + 1/2) = ~r(n + 1/2) 2 < b(n + 3/2) (5.16) 

It is now easy to see that for each positive integer n, there is a first-order 
critical value/3n + 1 near the value 

b(n + 1/2) = ~(n + 1/2) 2 (5.17) 

I-/~n+m < b(n + 1/2)]. Thus, the model exhibits infinitely many phase trans- 
itions. 

This completes our presentation of examples. The remaining sections 
of the paper prove Theorem 3.1. 
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6. P R E L I M I N A R Y  R E S U L T S  N E E D E D  FOR 
P R O O F S  OF T H E O R E M  3.1 

Let us first state some obvious consequences of Hypotheses 1.1 and 
recall some definitions. Since the interaction function g is even and the 
single-site distribution p is symmetric, we have 

g'(0) = c'(0) = i'(0) = 0 (6.1) 

where c(t) = log S~ exp(tx) p(dx) for t real and i(u) is the Legendre-Fenchel 
transform of c(t) [see (2.4)]. The function g is real analytic on R and 
strictly increasing on [0, oo). Thus, 

g ' ( x ) = - g ' ( - x ) > O  for all xe(O,L)  (6.2) 

where L = s u p { x :  x is in the support of p}. We define 

b(x)=i'(x)/g'(x) for x E ( - L , O ) u ( O , L )  (6.3) 

The function b(x) is positive, even, and real analytic on ( - L ,  0 ) u  (0, L). If 
g"(0) > 0, then b can be extended to a real analytic function on ( - L ,  L) by 
setting 

In this case, 

b'(0) = 0  (6.5) 

If, on the other hand, g" (0)=  0, then the function b has a pole at zero. 
One of our tasks in Theorem 3.1 is the computation of the set 

~//r m)~,//g} for f i>O (6.6) 

where 

Jr {(fi, m) ~ (0, oo) x N: f ig(m)- i(m) = sup{fig(u) - i(u)} = -fiO(fi)} 
u E N  

(6.7) 

By the evenness of g and i, we may restrict our attention to the sets 

dr = Jr  ((0, oo)x (0, oo)) (6.8) 

and 
J / / ~ = { m e ( 0 ,  o�9 m)eJ /g  + } for f i > 0  (6.9) 
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In this section, we prove a number of lemmas needed in the proof of 
Theorem 3.1. The first lemma states an elementary fact about the set ~ +. 

ke rnma  6.1. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. Then 

,/r _ { (b(x), x): 0 < x <  L} (6.10) 

i.e., if (fi, m) E .//g +, then m e (0, L) and b(m) = fi. 

Proof. According to part (d) of Theorem 2.2, if (fi, m)eJr  then 
m ~ ( - L ,  L) and f ig ' (m)= i'(m). If in addition m >0,  then b(m)=f i .  This 
yields the lemma. ] 

The next lemma considers the structure of the set ~'~- and defines a 
quantity fil that later is proved to be the smallest critical value 
(Lemma 6.6). 

[ . emma  6.2. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. The following conclusions 
hold: 

(a) There exists fi > 0 such that d / / ;  r ~ .  

(b) If ~'~- r  and f i> fi, then 0 q ~ ' ~  and Jg~- r  

(c) The graph of J//+ is strictly increasing; i.e., if (fi, m) and (fl, rh) 
are in ~ + with fi < fi, then m < rh. 

(d) Define the quantity 

fil =inf{fi > 0: ~///~ r  

Then fil = inf{fi > 0:0  q~//g~} and fil > 0. 

(e) We also have fil = s u p { f i > 0 :  Jr = ~ }  = s u p { f i > 0 :  ~#~= {0}}. 

Proof. (a) For any fixed x > 0 ,  we have i ( x )>O and g(x)>O.  
Hence, if we take fi > i (x) /g(x)  > 0, then 

f i g ( x ) -  i(x) > 0 = fig(O) - i(O) (6.11) 

and so 0 q~ Jr By part (d) of Theorem 2.2 and the evenness of g and i, 
there exists a number m > 0 such that 

f i g ( m ) -  i(m) = s u p { f i g ( u ) -  i(u)} = - f i t  k(fi) (6.12) 
u r  

It follows that J/[~ ~ ~ .  

(b) If xEJ /gJ ,  then x > 0  and g ( x ) > 0  and for any f i>f i  

fig(x) -- i(x) > fig(x) -- i(x) >~ fig(O) -- i(0) = 0 (6.13) 

822/52/1-2-13 
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It follows that 0 ~///r By part (d) of Theorem 2.2 and the evenness of g 
and i, we must have ~/Y2 ~ ~ .  

(c) If (fi, m) e ~ +, then for all z e (0, L) 

0 <~ fig(m) - i(m) - [fig(z) - i(z)] = [fig'(y) - i ' (y ) ]  dy (6.14) 

Now suppose that we have (fl, m) and (fl, rh) in J//+ with f l < f i  but with 
n5 < m. Then a twofold application of (6.14) would yield the contradiction 

0 <~ [f ig ' (y)  - i ' (y ) ]  dy < [f ig ' (y)  - i ' (y ) ]  dy 

= - f f f  [-fig'(y) - i ' (y) ]  dy <~ 0 (6.15) 

where we made use of (6.2). Hence, if (fl, m) and (fi, rh) are in ~ /+  with 
f i<fl ,  then m~<rh. On the other hand, if f i<fl ,  but m=rh ,  then by 
Lemma 6.1 

f i = b ( m )  = b(rh) ---- fl (6.16) 

and this contradicts fi < fi. Hence, if fl < fi, then m < rh. We have proved 
that the graph of J / +  is strictly increasing. 

(d) The quantity fil is finite by part (a). Define the quantity 

A -- inf{fi > 0:0  ql J///~} 

If 0 r  Jr then ~ / ~  r  hence, /~1 ~A.  If f l> fi~, then by part (b), 0 r 1 6 2  
and so fi>>.A; hence fll>~A. It follows that fi~ =A.  Using the equality 
fil = A, we proved that fil > 0 in Lemma 4.3. 

(e) Define the quantities 

B =  sup{fl> 0 : J / 2  = ~ } ,  C =  sup{f l>0:  J /~=  {0}} (6.17) 

If fl > B, then J/[~- # ~Z~ and so fl ~> fll ; hence B ~> ill. If B > flj, then there 
exist fi and fl satisfying B > fl > fi > ill, J#~- = ffS, ~'~- # ~ .  This contradic- 
tion to part (b) proves that B =  fil- Since "r is nonempty for any f i > 0  
[Theorem 2.2(d)], it is clear that ~ ' ~  = ~ if and only if Jgp = {0}; hence, 
fll = B = C. This completes the proof of Lemma 6.2. II 

Theorem 3.1 states the existence of the spontaneous magnetization 
m(fi) and states a number of its properties. The following lemma will be 
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useful in analyzing this function, According to Lemma 6.2, there exists a 
positive number fll with the property that 

{ ~  for 0<8<81 (6.18) 
~ -  5Z5 for 8~>81 

For fl > 81, we define the quantities 

m -(/3) = sup{m: m e Jl ' ff ,  fll ( fit <~ 8} (6.19) 

m+(fl) = inf{m: m ~ Jg~,, 8 '>/3} (6.20) 

These quantities are well-defined because of (6.18). 

I_emma 6.3. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. The following conclusions 
hold: 

(a) For each 8>81, O<m-(8)<..m+(8)<L. 
(b) For each fl>81, (fl, m-(8)) and (fl, m+(fl)) are in JC{+. Thus 

b(m (8))=fl=b(m+(8)) (6.21) 

(c) I f m e J g ~  for s o m e f i > f l l ,  t henm (fl)<~m<~m+(fl). 
(d) Both m (8) and m+(fl) are strictly increasing functions of 

8e (/~i, ~ 
(e) m-(8) is a left-continuous function of Be (ill, oo) and m+(fi) is a 

right-continuous function of 8 e (ill, oe). 

Proof. (a) For any f i 'e ( f l l ,  fl), ~ ,  r  [see (6.18)]. Hence, for 
any m ed/L~,, we have O<m<~.m-(8). For any m~JCL~, 8'e(fll,fl), and 
any r~ e d//~,,, 8 " >  fi, Lemma 6.2(d) guarantees that m <rh. It follows that 
m (8)<...m+(fl), For any rh ~J~ , ,  fl'>8, we have m+(/~)~<rh<L 
(Lemma 6.1). This completes the proof of part (a). 

(b) We prove that (8, m-(8)) is in ~ + .  The proof that (fl, m+(8)) is 
in ~ +  is similar. For n~{1,2,. . .} there exist numbers fl',e(fll, fl) and 
m n e ~  such that m, Tm-(fl) as n ~ oe. By passing to a subsequence if 
necessary, we may assume that 8' = l i m , ~  8', exists. Thus, 8~ ~<fl' ~<fl. 
For each n 

fl'ng(mn)-i(mn)>~fl~,g(x)-i(x) for all x e ~  (6.22) 

Hence, by taking n --* ~ ,  we have 

8'g(m-(fl))-i(m (8))>>.fl'g(x)-i(x) forall x e ~  (6.23) 
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Since m (/3)>0 [part (a)], it follows that (/3',m ( / / ) ) ~ + .  We now 
show that /3'=/3. If /3' <// ,  then for any / /"e (/3',/3) and any m eJg~, ,  
m - ( / 3 ) < m  [Lemma6.2(c)] .  This contradicts the definition (6.19) of 
m (/3) as a supremum and completes the proof of part (b). 

(c) As in the proof of part (b), for n a { 1, 2,...} there exist numbers 
/3', e (//1,//) and mn ~ ~ such that /3', ~ / /  and m, -~ m (//) as n ~ oo. 
If m a J g ~ ,  then by Lerhma6.2(c), m,<m.  It follows that m-(//)<...m. 
A similar proof shows that if m a ~ - ,  then m ~< m+(/3). The equalities in 
(6.21) follow from Lemma 6.1. 

(d) For /31</3</ / ' ,  m-(/ /)aJ/g~- and m (/3')eJ/g~ [pa r t (b ) ] ,  and 
so m -  (//) < m -  (/3') [Lemma 6.2(c)]. By a similar proof, m + (/3) < m + (/3') 
for/31 </3</ / ' -  

(e) We prove that if/3kT//, /3k~(/31,//), then m (//k)--'m (//). The 
proof that m+(//) is a right-continuous function o f / / e  (/31, oo) is similar. 
By Lemma 6.2(c), m-(/ /k) <m-( /?) ,  and so 

lira sup m -(ilk) ~< m -  (//) (6.24) 
k ~ o o  

As in the proof of part (b), for nE {1, 2,...} there exist numbers/3' ,e (//1,//) 
and m,~J/ /~ ,  such that / / ; ,~ / /  and m,' fm-( f l )  as n ~ o o .  Given e > 0 ,  
there exists an n such that mn >~ m ( / / ) -  s. Since for all sufficiently large k, 
/~k >//;,, we have 

m ( /3k)>m,>jm ( /3 ) - s  (6.25) 

for all sufficiently large k [Lemma 6.2(c)]. It follows that 

lim inf m (ilk) >~ m -  (//) -- e (6.26) 
k ~ o o  

Taking e-~ 0 and using (6.24), we conclude that m-( / / )  is a left-continuous 
function o f / /~  (/31, oo). This completes the proof of the lemma. | 

Let us extend the definitions of m 
setting 

m-(f l )  = m+(/3) = 0 

and 

-(fl)  and rn+(/3) to / /~(0, /3 , ]  by 

for /3 ~ (0,// ,)  (6.27) 

m (/31)=0, m+(/ /1)= lim m+(fl) (6.28) 

The extended function m (//) is a left-continuous function of f ie(0,  oo), 
while the extended function m+(//) is a right-continuous function of 
/3s (0, oo) [see Lemma 6.3(e)]. 
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The following lemma will be useful in analyzing the behavior of the 
spontaneous magnetization in a neighborhood of /31 in the case 
m+(/~l) = 0. The fact stated here was proved in the course of proving part 
(c) of Theorem 4.4. 

k e m m a  6.4. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. If m+(/~l)=0,  then the 
function b can be extended to a real analytic function on ( - L ,  L). 

In Definition 4.1, we defined the concepts of a first-order phase trans- 
ition and a second-order phase transition. We now restate the definition, 
but for convenience we give condition (4.2) in an equivalent form 
[m-(/3) = m+(/3)= rh and b ' ( rh )=0] .  The equivalence between (4.2) and 
(6.30) can be easily shown as in (7.7) (7.8) below. 

Defini t ion 6.5. The generalized Curie-Weiss model has a phase 
transition at an inverse temperature/~ ~ [/31, co) if either 

m-( f i )  < m + (fl) (6.29) 

(first-order phase transition) or 

m (/3) = m + (/~) = rh and b'(rh) = 0 (6.30) 

(second-order phase transition). Any value /3 at which a phase transition 
occurs is called a critical value. 

The next lemma states some facts about phase transitions. 

I . e m m a  6.6. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. Let ~ denote the set of all 
inverse temperatures at which, the generalized Curie-Weiss model has a 
phase transition. The following conclusions hold. 

(a) ~ :~ ~ .  In fact, the quantity/~1 with the property given in (6.18) 
belongs to ~ and is the smallest element of ~ .  

(b) For any/3 ~ ~ there exists a value rh e [ m -  (fl), m + (/?)] such that 

b'(rh) = 0  (6.31) 

(c) ~ is locally finite; i.e., for any 7 > 0 the set ~' c~ [0, 7] is finite. 

Proof. (a) Clearly, m + ( / / l ) = l i m ~ , m + ( / 3 ) > ~ 0 .  If m + ( / 3 1 ) > 0 =  
m (/?), then we have a first-order phase transition at /31. Suppose that 
m + (/31)= 0 = m-(/31 )- According to Lemma 6.4, b can be extended to a real 
analytic function on ( - L ,  L), and 

b'(m + (/3)) = b'(0) = 0 (6.32) 
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[see (6.5)]. Thus, we have a second-order phase transition at ill. We 
conclude that whether m + (fl 1) > 0 or m + (ill) = 0, fll belongs to ~ .  The fact 
that/31 =min{fl:  f l e ~ }  is now a consequence of (6.18). 

(b) If there is a second-order phase transition at fl, then by definition 
b ' ( th)=0,  where t h = m - ( f l ) = m + ( f l ) .  If there is a first-order phase 
transition at fl, then m - ( f l ) < m + ( f i )  and by (6.21) 

b(m (fl))= fl=b(m+(fl)) (6.33) 

By the mean value theorem, there exists the  [m-( f l ) ,m+(f l ) ]  such that 
b'(th)=0. 

(c) According to part (a), fll=min{fl:fie~}. It suffices to prove 
that for any 7>fi~ the set (~\{fl~})c~ [0, 7] is finite. According to part 
(b), there exists a mapping from (N\{f l l})C~[0,7]  into [0, L) that 
associates to each f l e N  a root of b' in the interval [m (fl), m+(fi)]. This 
mapping is injective since fll < fi < fi implies that m + (fi)< m-(f l)  [Lemmas 
6.3(b) and 6.2(c)]. We claim that the image of (~\{f l l})c~ [0,7]  under 
this mapping is a subset of the interval [m + (fil), m + (7)]. Indeed, if f > ill, 
then for any fie (ill, fl), m+(fl) <m (fi), and so 

m+(fi~) = lira m+(fl)<~m-(fl) (6.34) 

Thus, if fll<fi~7, then m+(fll)<~m (fl)<~m+(fl)<~m+(7). This proves 
the claim. It follows that the set (N\{fl~ })c~ [0, 7] is injectively mapped 
into the set of roots of b' in the interval [m+(fi~), m+(7)]. Now either 
m+(fll) > 0  or m+(fl~)=0. I f m + ( f l l ) > 0 ,  then the functions b and b', being 
real analytic on ( - L ,  0) ~ (0, L), are real analytic in a neighborhood of the 
interval [m+(fll), m+(7)]. Hence, there are only finitely many roots of b' 
in this interval. This shows that the set ( ~ \ { f i l } ) w [ 0 , 7 ]  is finite. If 
m+( f l l )=0 ,  then by Lemma 6.4, b and thus b' can be extended to a real 
analytic function on ( - L ,  L). Again, we conclude that there are only 
finitely many roots of b' in the interval [m+(fl~), m+(7)] and therefore 
that the set (~\{f l l})c~ [0,7] is finite. This completes the proof of the 
lemma. | 

The next lemma, which is the last lemma in this section, is needed in 
the proof of part (f) of Theorem 3.1. 

k o m m a  6.7. We assume that the interaction function g and the 
single-site distribution p satisfy Hypotheses 1.1. If L <  oe and p{L} >0,  
then 

lim tc"(t) = 0 (6.35) 
t ~ c x ~  

where c(t)= log SR exp(tx)p(dx) for t real. 



Generalized Curie-Weiss Model 197 

Proof. Let e = p{L} > 0 and define for t real the probability measure 

exp(tx) p(dx) / f e  exp(ty) p(dy) (6.36) pt(dx) 

Then 

Efo l c"( t )=j  x2 pt(dx) x p,(dx) > 0  (6.37) 

Since the support of Pt is a subset of the closed interval [ - L ,  L],  we 
conclude that for t > 0 

{f If 0 <<. tc"(t) <~ t Lx  p t ( d x )  --  x [ t ( d x )  

<<. L f t(L - x) exp(tx) p(dx) / [e  exp(tL)]  

= (L/e)~ t ( L -  x ) e x p [ -  t ( L -  x) ]  p(dx) (6.38) 
d [-L.L3 

For each t > 0 the nonnegative functions f , (x)  = t(L - x) exp[ - t(L - x)] ,  
x s [ - L , L ] ,  are bounded by 1/e and as t--.oo, f , ( x ) -*O for each 
x e [ - L ,  L].  Hence, by the dominated convergence theorem 

f f~(x) p(dx) --, as t -~ oo (6.39) 0 
[--L,L] 

It follows from (6.38) that tc"(t) ~ 0 as t ~ oo. | 

In the next section, we will use the above lemmas in order to complete 
the proof of Theorem 3.1. 

7. PROOF OF T H E O R E M  3.1 

Using the lemmas presented in the previous section, we now prove 
Theorem 3.1. 

7.1. Proof of Theorem 3 .1 (a)  

The set ~ denotes the set of all inverse temperatures at which the 
generalized Curie-Weiss model has a phase transition. Each/? E N is called 
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a critical value. According to Lemma 6.6, the set ~' is nonempty and is 
locally finite. Thus, the elements of ~ are either finite in number (0 < fil < 
" ' "  < f i N  for some N e  { 1, 2,... } ) or countably infinite (0 < fil < fi2 < "" )  and 

divergent to ~ .  
For f ie(0,  ~ ) \ ~ ,  we define 

rn(fi)  = m -  (~ )  = m + (fi) (7.1) 

By (6.27), m(f i )=0  for fie(0, fil), while by Lemma 6.3, m(fi) is positive 
and is strictly increasing for f ie(f i l ,  ~ ) \ N .  Since m+(fi) is right con- 
tinuous and m-(f i)  is left continuous, m(fi) is continuous on the connected 
open subintervals of the set (0, m ) \ N .  According to Lemma 6.3(b), 

b(m(fi))=fi  for f ie(f i l ,  ~ ) \ ~  (7.2) 

Since we cannot have a second-order phase transition at any fiCN, it 
follows from (6.30) that 

b ' ( m ( f i ) ) r  for f i e ( i l l  , ~ ) \~7~  (7.3) 

Putting the information together, we see that on the connected open sub- 
intervals of the set (fil, ~ ) \ ~ ,  m(/~) is a continuous, strictly increasing 
function whose inverse function is the real analytic function b. The inverse 
function theorem implies that m(fi) is real analytic on the connected open 
subintervals of the set (fil, ~ ) \ ~ .  Of course, for f ie (0, fi~), m(/~) - 0 is real 
analytic. 

According to the Definition 6.5 of phase transition, there are two 
possibilities for the behavior of m(fi) in a neighborhood of a critical value 
f i ~ .  The first possibility is that by (6.29), m has a jump discontinuity 
at fii: 

lim m( f i )  = m - (fii) < m + (fii) = lim m(f i )  (7.4) 

The second possibility is that by (6.30) 

rn- (fii) = m + (fii) and b ' ( m + ( f i i ) )  = 0  (7.5) 

If we define m ( f i i ) =  m + (fii), then m( f i )  is continuous at fii. In this second 
case, we would like to show that 

lim m'(f i)= ~ (7.6) 
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Since b(m(f l ) )=f i  for fl~(/~l, o o ) \ ~  [see (7.2)], we have for 

1 
m ' ( / ~ ) - - -  > 0  (7.7) 

b'(m(fl) ) 

For i>~2, m+(/~i)e(0, L), and so b' is real analytic in a neighborhood of 
the point m +(/3~). Hence 

1 1 
lim m'(fi) = lim - -  - = (7.8) ~;~, ~ b ' ( m ( [ l ) )  b'(m+(~i)) oo 

For i =  1, m+( f l , )=0 ,  in which case b can be extended to a real analytic 
function on ( - L ,  L). By the same calculation of (7.8) with i =  1, we see 
that again l im~,~ ,m' ( f l )=oo.  Because of the two possibilities for the 
behavior of m(fi) in the neighborhood of a critical value fl;er m(/~) 
cannot be represented as the restriction of one real analytic function in a 
neighborhood of a critical value fli ~ ~-  This completes the proof of part (a) 
of Theorem 3.1. 

7.2. Proof of  Theorem 3 .1 (b)  

According to (6.18), the critical value /~1 has the property that 
Jr for /3~(0,/31). Since J///r is nonempty for all f i > 0  
[-Theorem 2.2(d)], it follows that for 0 < fl < i l l ,  ~ '~=  {0}. This gives the 
first line of part (b). According to part (c) of Lemma6.3, for all 
/~e (//1, o o ) \ ~  the set Jr consists of the single point {m(/3)}. Hence, by 
symmetry, for all /~e(/~l, oo ) \N  the set J/{~ equals {m(/3),-m(/?)}. This 
gives the second line of part (b). 

7.3. Proof of  Theorem 3.1(c)  

This is proved in parts (d) and (e) of Lemma 6.2. 

7.4. P r o o f  o f  T h e o r e m  3 . 1 ( d )  

For f ie  (0, ill), m( f i )=0 ,  and thus (3.11) holds: 

flg'(m(fl) ) = 0 = i'(m(fl) ) 

For f i e ( i l l ,  o o ) \ ~ ,  we have 
i'(m([l) ) 

b(m(fl) ) - - -  = fl 
g'(m(~)) 

where g' (m(f i ) )> 0, since m(/3)> 0. Thus, again (3.11) holds. 

(7.9) 

(7.10) 
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We now prove that 

m(/3)?L as /3~  ~ in the set (0, oo ) \N  (7.11) 

Suppose that (7.11) fails. Then there exists some r e  (0, L) and a sequence 
{/3N, N =  1, 2,...} satisfying fiNe(/31, OO)\N, /3U~ O% such that m(flx)<~r 
for each N. Since /3N>/31 for each N, we have m(f lu)>m+(f l l ) .  Below we 
will prove that the image of the interval [m + (/31), r]  is a bounded subset of 
N; i.e., that 

b([m+(/31),r])c__[c,d], some - o o  < c < d <  oo (7.12) 

Then for each N, since b(m(flN) ) ----/3N and m+(/31)< m(flN)<~ r, we would 
have 

b(m(/3u) ) =/3N <~ d (7.13) 

But (7.13) is impossible, since /3N-'* oo. This contradiction proves (7.11). 
We now prove (7.12). If m+(/31)>0, then the function b, being real 
analytic on ( - L ,  0) u (0, L), is real analytic in a neighborhood of the inter- 
val [m+(/31), r]. In this case, (7.12) clearly holds. If m+(/31)=0, then by 
Lemma 6.4, b can be extended to a real analytic function on ( - L ,  L), and 
again (7.12) holds. This completes the proof of part (d). 

7.5. Proof of Theorem 3 .1 (e)  

Because of the structure of JCL/3 given in part (b), the limit (3.13) is 
proved exactly like the analogous limit for the Curie-Weiss model as 
presented in Section IV.4 of ref. 4 (see Theorem IV.4.1 there). 

7.6. Proof of  Theorem 3 .1 ( f )  

We assume that L <  ov and p{L} >0.  If ~ consists of the single 
critical point {/31}, then we are done, so let us assume that the cardinality 
of ~ is at least two. According to part (b) of Lemma 6.6, there exists a 
mapping from ~\{/31} into [0, L) that associates to each /3ie~'\{/31} a 
root of b' in the interval [m-(/3i), m+(/3i)]. This mapping is injective since 
/3~</3j, l < i < j ,  implies that m+(/3~)<m-(/3j) [Lemmas6.3(b)  and 
6.2(c)]. It follows that the set ~ \  {/31 } is injectively mapped into the set of 
roots of b' in the interval [m (/32), L). The function b is real analytic in 
this interval. If we prove that b'(x) ~ oo as x T L, then there can be only 
finitely many roots of b' in the interval [m (/32), L), and part (f) will 
follow. 
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By Property 2.1(i) of i(u), i ' ( c ' ( t ) )  = t for all t~ N. Thus, 

i " (u)  1 
(7.14) 

i ' (u )  (c') l (u)  c"((c') l ( u ) )  

As u $ L, (c')-1 (u)--* oo, and so Lemma 6.7 implies that i " ( u ) / i ' ( u ) ~  oo as 
u!"L. In a neighborhood of L, the functions g' ad 1/g' are positive and 
bounded and g" is bounded. Since i ' (u )  --, oo as u T L, we find 

b' (u)  = i " ( u ) / g ' ( u ) -  i ' (u )  g " ( u ) / [ g ' ( u ) ]  2 

= i ' ( u ) { i " ( u ) / [ i ' ( u )  g'(u)] - g " ( u ) / [ g ' ( u ) ]  2 } -* oo (7.15) 

as u $ L. This completes the proof of part (f) of Theorem 3.1. With part (f), 
the proof of Theorem 3.1 is finished. 
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